Europäisches Patentamt
(19)
European Patent Office
*EP001034967B1*
Office européen des brevets
(11)
EP 1 034 967 B1
EUROPEAN PATENT SPECIFICATION
(12)
(45) Date of publication and mention
(51) Int Cl.7:
of the grant of the patent: 21.07.2004 Bulletin 2004/30
B60K 41/00, B60K 41/04 // F16H59:66
(21) Application number: 00104387.6 (22) Date of filing: 02.03.2000 (54) Driving force control with gradient resistance torque dependent correction factor Antriebskraftsteuerung mit steigungsabhängigem Drehmoment Korrekturfaktor Commande de la force d’entraînement avec facteur correctif dépendant du couple de résistance de pente (84) Designated Contracting States:
• Nishijima, Hiroaki Yokohama-shi, Kanagawa 241-0005 (JP) • Yasuoka, Masayuki Yokohama-shi, Kanagawa (JP)
DE FR GB
(30) Priority: 05.03.1999 JP 5828999 (43) Date of publication of application:
(74) Representative: Grünecker, Kinkeldey,
13.09.2000 Bulletin 2000/37
(73) Proprietor: NISSAN MOTOR COMPANY, LIMITED
Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)
Yokohama-shi, Kanagawa 221-0023 (JP)
(56) References cited: (72) Inventors:
EP 1 034 967 B1
• Toukura, Nobusuke Yokosuka-shi, Kanagawa 238-0312 (JP)
EP-A- 0 899 149 US-A- 5 728 026
US-A- 4 720 793 US-A- 5 832 400
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). Printed by Jouve, 75001 PARIS (FR)
EP 1 034 967 B1 Description
5
10
15
20
25
30
35
40
45
50
55
[0001] The present invention relates to a driving force control for an automotive vehicle. [0002] The term 'standard resistance' or 'standard running resistance' is herein used to mean any force which opposes the motion of an automotive vehide which is driven to keep rolling over the surface of a flat road having 0% gradient at a constant vehicle speed. The term 'running resistance' is herein used to mean any force that opposes the motion of an automotive vehicle which is driven to keep rolling over the surface of a road at a constant vehicle speed. Running resistance is equal to standard resistance if an automotive vehicle is driven to keep rolling over the surface of a flat road having 0% gradient at a constant vehicle speed. Running resistance increases and becomes greater than standard resistance if the automotive vehicle is accelerated to increase speed from the constant vehicle speed. The term 'acceleration resistance' is herein used to mean this increment or difference in running resistance that has occurred due to acceleration. Running resistance is greater when the automotive vehicle is driven to keep rolling over the surface of a flat road having gradient greater than 0% at a constant vehicle speed than standard resistance for the same vehicle speed. The term 'gradient resistance' is used to mean this increment or difference in running resistance. [0003] On an ascending road, running resistance that opposes the motion of an automotive vehicle increases due to road gradient, so that the vehicle operator would feel a lack of acceleration if driving force for a flat road having 0% gradient were kept. Accordingly, the operator manipulates an accelerator pedal to cause a power train including an internal combustion engine and an automatic transmission to increase its driving force. [0004] JP-A 9-242862 and JP-A 9-287502 disclose driving force control systems that estimate road gradient and cause a power train to alter its driving force in response to the estimated road gradient. [0005] JP-A 9-242862 teaches selecting appropriate one of different ratio change patterns of an automatic transmission in response to road gradient for timely adjustment to an increase in running resistance caused by the road gradient. [0006] JP-A 9-287502 teaches varying an increase in target engine torque in proportion to an increase in running resistance over the whole variation of the increase in running resistance. [0007] US-A-4 720 793 describes a generic control apparatus for determining a driving force for an automotive vehide equipped with a continuously variable transmission. A reference driving torque is calculated based on the operating amount of the accelerator pedal, based on the vehicle speed, and based on stored map data representing a predetermined relation between these variables. The calculated reference driving torque value is adjusted by a correction value. The correction value is obtained by accumulating separately calculated compensation values. While a first compensation value is based on the operating speed of the accelerator pedal, further compensation values take the vehicle weight and a road grade into account. The vehicle weight and the road grade are computed from a detected driving force of the vehicle and a known relation between the driving force and these variables. Based on the corrected target drive torque value, a reference fuel amount and a variation of a speed ratio are determined. [0008] The above-mentioned driving force control systems are satisfactory to some extent. However, a need remains to develop a driving force control system in such a direction as to determine a correction in amount of driving force in response to operator demand on the motion of an automotive vehicle relative to the surface of an ascending road as well as an increase in running resistance due to the road gradient. [0009] An object of the present invention is to provide a driving force control for an automotive vehicle, which provides a good ride feel to meet operator demand on the motion of an automotive vehicle relative to the surface of an ascending road. [0010] This is achieved by the features of the independent claims. Figure 1 is a block diagram of an automotive vehicle having driving wheels, a power train including an engine and an automatic transmission, and a controller. Figure 2 is a control diagram implementing the present invention. Figure 3 is a graphical representation of a characteristic of variation of a driving force correction (ADDFD) against variation of an increment in running resistance (RESTRQ). Figure 4 is a flow chart of a control routine implementing the present invention. Figure 5 is a control diagram illustrating another preferred implementation of the present invention. Figure 6 is a graphical representation of a characteristic of variation of a ratio (ALPHA) against variation of an increment in running resistance (RESTRQ). Figure 7 is a control diagram illustrating still another preferred implementation of the present invention. [0011] Referring to the accompanying drawings, Figure 1 is a schematic view of a motor vehicle installed with a driving force control system implementing the present invention. [0012] The motor vehicle has an engine 1, an automatic transmission 2, and a controller 3. Output from the engine 1 is transmitted via the automatic transmission 2 to driving wheels. The controller 3 performs an integral control over the engine 1 and automatic transmission 2.
2
EP 1 034 967 B1
5
10
15
20
25
30
35
40
45
50
55
[0013] To adjust output from the engine 1, an electronically controlled throttle valve is disposed in an intake passage of the engine. An actuator, in the form of a motor, for example, activates the throttle valve to open the valve in degrees, controlling intake airflow rate to the engine, thus controlling output torque of the engine 1. The automatic transmission 2 may be in the form of an automatic transmission having discrete speed ratios or a continuously variable transmission (CVT). The CVT includes a belt type CVT and a toroidal type CVT. [0014] Attached to the engine 1 are a crankshaft angle sensor 4 and a throttle opening degree sensor 5. The crankshaft angle sensor 4 is used to determine engine speed. The throttle opening degree sensor 5 is used to determine degree of opening of the throttle valve within the intake passage. Attached to the transmission 2 are an input shaft speed sensor 6 and an output shaft speed sensor 7. The input and output shaft speed sensors 6 and 7 are used to determine speed of the transmission input shaft and that of the transmission output speed, respectively. Output signals from these sensors 4, 5, 6, and 7 are fed to the controller 3. In addition, an accelerator sensor 8 and a vehicle acceleration sensor 9. The accelerator sensor 8 is used to determine operator's manipulation of an accelerator pedal. The vehicle acceleration sensor 9 is used to determine acceleration to which the vehicle is subject to. Output signals from these sensors 8 and 9 are also fed to the controller 3. [0015] The controller 3 includes a microprocessor and memories. The controller 3 determines operating state of a vehicle based on the signals fed thereto and controls fuel injection quantity, ignition timing and intake airflow rate of the engine 1 and speed ratio of the transmission 2. [0016] Concretely, for driving on a flat road (with 0% gradient), the controller 3 determines and sets an ordinary target value of driving force in response to detected operator's manipulation of an accelerator and vehicle speed. It outputs commands to the engine 1 and transmission 2 so that the determined ordinary target value of driving force is accomplished. In operating state, such as driving on an ascending road, where running resistance increases, the controller 3 corrects the ordinary target value of driving force to cope with the increase in running resistance, thus keeping acceleration high enough to meet the operator's demand. [0017] Referring now to Figures 2 to 4, description is made on driving force control carried out by the controller 3. [0018] Figure 2 is a block diagram of a portion of the controller 3, illustrating a driving force control system. The driving force control system includes an ordinary target driving force generator (OTDFG) B10, a running resistance increment generator (RRIG) B20, a driving force correction generator (DFCG) B30 a corrected target driving force generator (CTDFG) B40, a target engine torque generator (TETG) B50, and a target speed ratio generator B60. [0019] The OTDFG B10 inputs information as to operator's manipulation of accelerator APO from the accelerator sensor 8 and also information as to vehicle speed VSP [m/s] from the output shaft speed sensor 7. The OTDFG B10 includes a memory storing a predetermined map that defines various values of ordinary target driving force tTd#n [N] needed for driving the vehicle on a flat road (with 0 % gradient) at various values of constant speed VSP with various values of constant operator's manipulation of accelerator APO. The OTDFG B10 performs a table look-up operation of the map using the input information as to APO and VSP to determine an ordinary target driving force tTd#n [N] and provides the determined ordinary target driving force tTd#n [N] to the corrected target driving force generator B40. [0020] The RRIG B20 includes an effective driving force generator (EDFG) B21, a standard running resistance generator (SRG) 822, and an acceleration resistance generator (ARG) B23. [0021] The EDFG B21 inputs information as to fuel injection quantity TP supplied to the engine 1 and information as to engine speed NRPM from the crankshaft angle sensor 4. The EDFG B21 includes a memory storing a predetermined map that defines various values of ideal output torque of the engine 1 against various combinations of values of TP and values of NRPM. The EDFG B21 performs a table look-up operation of this map using the input information TP and NRPM thereto to determine an ideal engine output torque ENGTRQ [Nm]. It multiplies the determined ideal engine output torque ENGTRQ [Nm] with a speed ratio RATIO of the transmission 2 to give an ideal output shaft torque TRQOUT [Nm] of the transmission 2. [0022] The SRG 822 inputs information as to vehicle speed VSP resulting from calculation on output shaft speed of the transmission 2. The SRG 822 includes a memory storing a predetermined table that defines various value of standard running resistance torque RLDTRQ [Nm] against various values of vehicle speed VSP. The value of TLDTRQ [Nm] becomes larger as the value of VSP becomes higher. [0023] The ARG 823 inputs information as to vehicle acceleration GDATA [m/s2]. Information as to vehicle weight WV [kg], a tire radius rTIRE [m] and final reduction ratio zRATIO is stored as reference data in the ARG B23. The ARG B23 determines an acceleration resistance torque GTRQ [Nm] as a product of GDATA, WV, rTIRE, and zRATIO as expressed by the following equation; GTRQ = GDATA x WV x rTIRE x zRATIO
(1).
[0024] The RRIG 820 calculates a sum of standard running resistance torque RLDTRQ and acceleration resistance torque GTRQ and subtracts the sum from ideal output shaft torque TRQOUT to give a running resistance increment
3
EP 1 034 967 B1 RESTRQ [Nm]. The RRIG B20 provides the RESTRG to the DFCG 830. Running resistance increment RESTRQ can be expressed by the following equation;
5
10
15
20
25
30
35
40
RESTRQ = TRQOUT - (RLDTRQ + GTRQ)
(2).
[0025] The DFCG 830 includes a memory storing data in a table as illustrated in Figure 3 and performs a table lookup operation of the stored data using the running resistance increment RESTRQ to determine a driving force correction ADDFD [N]. The DFCG 830 provides the determined ADDFD to the CTDFG 840. [0026] The fully drawn interconnected line segments shown in Figure 3 illustrate a first preferred implementation of the present invention. Gradients of the line segments are different from each other. In other words, a ratio of driving force increment ADDFD against an increase in running resistance increment RESTRQ (gradient) varies depending on the magnitude of a value of RESTRQ. [0027] Specifically, over values of RESTRQ not greater than a first predetermined value RES#TLEV1, the rate is zero so that zero is set as ADDFD. The first predetermined value RES#TLEV1 takes any one of values ranging from 10 to 30 [Nm], which range of values are equivalent to 2% gradient of road. During operation of the vehicle when RESTRQ is less than or equal to the first predetermined value RES#TLEV1, no correction in driving force takes place, thus preventing occurrence of any unexpected driving force correction due to, for example, an error in calculating RESTRQ, a small variation in wind against the vehicle or a small variation in running resistance derived from a gradual gradient change. [0028] Next, over values of RESTRQ greater than RES#TLEV1 but not greater than a second predetermined value RES#TLEV2, the driving force correction ADDFD can be expressed as: ADDFD = RESTRQ x 0.5/rTIRE
(3).
In this equation, RESTRQ is divided by tire radius rTIRE for conversion from torque [Nm] to force [N], and 50% of RESTRQ is converted into ADDFD. In this example, 50% of RESTRQ has is converted, this percentage is not limited to 50%. This value may differ depending upon characteristics of vehicles. Preferably, this value is chosen from values ranging from 30% to 70%. The remaining portion of RESTRQ left unconverted is not translated into ADDFD, leaving a room for the vehicle operator to participate the driving force correction by depressing the accelerator pedal, thus providing a natural acceleration fit to the vehicle operator's demand. [0029] Over values of RESTRQ greater than RES#TLEV2, the driving force correction ADDFD is kept at a predetermined value ADDFDLM. The setting is such that, with the running resistance increment at the second predetermined value RES#TLEV2, increasing the driving force by the predetermined value ADDFDLM of driving force correction ADDFD will not subject the vehicle to acceleration exceeding 0.07G. In this preferred implementation, the second predetermined value RES#TLEV2 takes a value equivalent to 14% gradient of road. By setting the maximum acceleration by ADDFD at about 0.07G, occurrence of undesired rapid acceleration of the vehicle is prevented. [0030] As readily seen from Figure 3, there is no discrete change in ADDFD against any change in RESTRQ during operation of the vehicle, thus preventing occurrence of any considerable shock due to a change in ADDFD against any change in RESTRQ. [0031] Turning back to Figure 2, the CTDFG B40 receives ordinary target driving force tTd#n and driving force correction ADDFD and determines a corrected target driving force tTd by calculating a sum of tTd#n and ADDFD. The corrected target driving force tTd can be expressed as:
45
tTd = tTd#n + ADDFD
50
55
(4).
The CTDFG 840 provides the determined tTd to the TETG B50 and also to the TRG B60. [0032] The TETG 850 receives RATIO as well as tTd[N] and determines a target engine torque Te[N] (= tTe) after dividing tTd[N] by RATIO. The TETG B50 provides the determined Te[N] to a control section of the engine 1. [0033] The TRG 860 receives VSP[m/s] as well as tTd[N] and determines a target speed ratio tRATIO using VSP [m/s] and tTd[N]. The TRG 860 has a memory storing a predetermined map that defines various values of target speed ratio tRATIO against various combinations of values of VSP and values of tTd. In determining the target speed ratio tRATIO, the TRGB60 performs a table look-up operation of this predetermined map using VSP and tTd. The TRG 860 provides the determined tRATIO to a control section of the transmission 2. Instead of target speed ratio tRATIO, a target input shaft speed may be determined and used as an input to the control section of the transmission 2. [0034] Figure 4 is a flow chart of a control routine implementing the present invention.
4
EP 1 034 967 B1
5
10
15
20
25
30
35
40
[0035] At step 511, the controller 3 inputs information of APO, VSP, GDATA, RATIO, TP, and NRPN. [0036] At step S12, the controller 3 determines tTd#n by performing a table look-up operation, using APO and VSP, of the map illustrated in Figure 2 within the box B10. At step S13, the controller 3 determines ENGTRQ by performing a table look-up operation, using TP and NRPN, of the map illustrated in Figure 2 within the box B21. At step S14, the controller 3 calculates a product of ENGTRQ and RATIO to give TRQOUT. [0037] At step S15, the controller 3 determines RLDTRG by performing a table look-up operation, using VSP, of the map illustrated in Figure 2 within the box B12. At step S16, the controller 3 calculates a product of GDATA, WV, rTIRE, and zRATIO to give GTRQ. [0038] At step S17, the controller 3 calculates a subtraction of (RLDTRQ + GTRQ) from TRQOUT to give RESTRQ. Using RESTRQ makes it possible to correct driving force to compensate for a drop in acceleration due to deterioration of torque transmission efficiency of the transmission 2. Explaining more in detail, if the torque transmission efficiency of the transmission 2 deteriorates, the actual output shaft torque becomes smaller than the calculated output shaft torque TRQOUT, causing a reduction in acceleration to reduce acceleration resistance GTRQ. Thus, the calculated RESTRQ becomes large as the torque transmission efficiency drops, making it possible to increase driving force to compensate for a drop in acceleration due to deterioration in torque transmission efficiency. [0039] At step 518, the controller 3 determines ADDFD by performing a table look-up operation of Figure 3 using RESTRQ. [0040] At step S19, the controller 3 determines tTd by calculating a sum of tTd#n and ADDFD. At step 520, the controller 3 determines tTe by calculating (tTd/RATIO ) x (rTIRE/zRATIO) and outputs, as a command to the engine 1, the determined tTe. At step S21, the controller 3 determines tRA TIO by performing a table look-up operation, using tTd and VSP, of the map as illustrated in Figure 2 within the box 860, and outputs, as a command to the transmission, the determined tRATIO. [0041] From the preceding description, it is understood that the ordinary driving force tTd#n (step S12) is set as the corrected driving force tTd (step S19) during operation of the vehicle on a flat road with zero acceleration resistance GTRQ. This is because the running resistance increment RESTRQ becomes zero when the acceleration resistance GTRQ is zero. Under this running condition, the engine 1 and the transmission 2 are operated based on the ordinary driving force tTd#n obtained at step 512. [0042] From the preceding description, it will now be appreciated that a change in running resistance causes the magnitude of driving force to be corrected in response to the running resistance increment RESTRQ, thus always providing an acceleration feel fit to the vehicle operator demand. [0043] If RESTRQ is less than RES#TLEV1, ADDFD is zero (see Figure 3). This prevents occurrence of undesired driving force correction during operation of the vehicle on a generally flat road or upon occurrence of error in calculating RESTRQ. [0044] If RESTRQ becomes greater than RES#TLEV2, ADDFD is kept constant, preventing occurrence of rapid acceleration. [0045] Figure 5 illustrates a second preferred implementation according to the present invention. [0046] The second preferred implementation is substantially the same as the first preferred implementation except the provision of a DFCG B300 (see Figure 5) instead of the DFCG B30 (see Figure 2). [0047] Similarly to the DFCG B30 of Figure 2, the DFCG B300 determines a driving force correction ADDFD in response to the magnitude of a running resistance correction RESTRQ. The DFCG B300 calculates a ratio ALPHA[/ m] of ADDFD to RESTRQ (ALPHA = ADDFD/RESTRQ) and determines ADDFD based on the ALPHA. [0048] Figure 6 is a table illustrating various values of ALPHA against various values of RESTRQ. The DFCG B300 performs a table look-up operation, using RESTRQ, of the table shown in Figure 6 to determine ALPHA, and determines ADDFD by calculating the equation as follows:
45
ADDFD = RESTRQ x ALPHA
50
55
(5).
[0049] Specifically, over values of RESTRQ not greater than a first predetermined value RES#TLEV1, the ALPHA is zero. The first predetermined value RES#TLEV1 takes any one of values, which are equivalent to 2% gradient of road. During operation of the vehicle when RESTRQ is less than or equal to the first predetermined value RES#TLEV1, no correction in driving force takes place. This prevents occurrence of any unexpected driving force correction due to, for example, an error in calculating RESTRQ, a small variation in wind against the vehicle or a small variation in running resistance derived from a gradual gradient change. [0050] Next, over values of RESTRQ greater than RES#TLEV1 but not greater than a second predetermined value RES#TLEV2 that is equivalent to 14% gradient of road, the ALPHA is set equal to 0.5 x rTIRE. That is ALPHA = 0.5 x rTIRE. In this case, 50% of RESTRQ is converted into ADDFD. The remaining portion of RESTRQ left unconverted is not translated into ADDFD, leaving a room for the vehicle operator to participate the driving force correction by
5
EP 1 034 967 B1
5
10
15
20
25
depressing the accelerator pedal, thus providing a natural acceleration fit to the vehicle operator's demand. [0051] Over values of RESTRQ greater than RES#TLEV2, the ALPHA gradually decreases toward zero as RESTRQ increases. [0052] The determined ADDFD and a predetermined value ADDFDLM are compared and a lower one of them is selected and set as a new driving force correction ADDFD. Thus, the values of ADDFD are limited at ADDFDLM. By setting the maximum acceleration by ADDFDLM at about 0.07G, occurrence of undesired rapid acceleration of the vehicle is prevented. [0053] As seen from Figure 6, the vertical axis of the table indicates a rate of conversion of RESTRQ to ADDFD, making it easier to recognize the conversion rate. This easy recognition of the conversion rate will facilitate final adjustment after its installation into a vehicle. [0054] Figure 7 illustrates a third preferred implementation according to the present invention. [0055] The third preferred implementation is substantially the same as the first preferred implementation except the provision of a RRIG 8200 instead of RRIG 820. Information as to VSP, GDATA, and tTd is used as inputs to the RRIG B200. The RRIG B200 provides, as an output, an increment in running resistance or a running resistance increment RESFORCE [N] to a DFCG B30. The running resistance increment RESFORCE [N] corresponds to the running resistance increment RESTRQ [Nm] of the first preferred implementation. [0056] As shown in Figure 7, the RRIG B200 includes a SRG B24 and an ARG B25. But, it does not include one corresponding to the EDFG B21 of the first preferred embodiment. [0057] The SRG 824 inputs information as to vehicle speed VSP resulting from calculation on output shaft speed of the transmission 2. The SRG B24 includes a memory storing a predetermined table that defines various value of standard running resistance torque RLDFORCE [N] against various values of vehicle speed VSP. The value of TLDFORCE [N] becomes larger as the value of VSP becomes higher. [0058] The ARG 825 inputs information as to vehicle acceleration GDATA [m/s2]. Information as to vehicle weight WV [kg] is stored as reference data in the ARG 825. The ARG B25 determines an acceleration resistance force GFORCE [N] as a product of GDATA and WV as expressed by the following equation; GFORCE = GDATA x WV
30
35
40
(6).
The ARG B25 calculates subtraction of GFORCE [N] from tTd [N] to give the running resistance increment RESFORCE [N]. The ARG B25 provides as its output the running resistance increment RESFORCE [N] to the DFCG 830. [0059] The third preferred implementation does not need the EDFG B21 of the first preferred implementation, which estimates output shaft torque of the transmission 2. This reduces an operation load on the controller 3 and a considerable reduction in ROM capacity due to elimination of the map used in the EDFG 21. [0060] In the preceding description, the running resistance increment generator (RRIG) 820 is described in connection with Figure 2. For full understanding of the RRIG 820, reference should he made to EP 1 034 966 A, filed by the inventors, entitled 'Process of Forming Standard Resistance Values and Vehicle Control Using Same', and claims priority based on Japanese Patent Application NO. 11-58291 filed in Japan on March 5, 1999. Particular reference is made to Figure 2 illustrating a driving torque generator (DTG) 2, a standard resistance generator 3, and a summation point to make subtraction of RLDTRQ from TRQALL to give RESTRQ.
Claims 45
1.
A driving force control system for an automotive vehicle having an accelerator pedal, an engine (1), and an automatic transmission (2), comprising: an ordinary target driving force generator (B10) generating ordinary target driving force (tTd#n) in response to operator manipulation of the accelerator pedal (APO) and vehicle speed (VSP),
50
a standard resistance generator (B22) generating a standard resistance (RLDTRQ), a driving force correction generator (B30, B300) for generating a driving force correction (ADDFD), 55
a corrected driving force generator (B40) for determining a corrected target driving force (tTd) by adding a driving force correction (ADDFD) to said ordinary target driving force (tTd#n), a target engine torque generator (B50) for generating a target engine torque (tTe) in response to said corrected
6
EP 1 034 967 B1 target driving force (tTd), and a target ratio generator (B60) for generating a target ratio (TRATIO) in response to said corrected target driving force (tTd) 5
characterized in that said driving force control system further comprises a running resistance increment generator (820) including said standard resistance generator (B22), said running resistance increment generator (B20) being operative to determine an increment in running resistance (RESTRQ) from said standard resistance (RLDTRQ), and said driving force correction generator (B30, B300) being adapted to convert said increment in running resistance (RESTRQ) into said driving force correction (ADDFD) by dividing the range of values of said running resistance (RESTRQ) into a plurality of portions, the values of said running resistance (RESTRQ) of each portion being converted differently into values of said driving force correction (ADDFD).
10
15
2.
A driving force control system according to claim 1, wherein over a portion of the range of said increment in said running resistance (RESTRQ), said driving force correction generator (B30, B300) is operative to a predetermined percentage of the values of said running resistance (RESTRQ) are converted into values of said driving force correction (ADDFD), so that the remaining portion of said running resistance (RESTRQ) left unconverted is not translated into said driving force correction (ADDFD), leaving a room for the vehicle operator to participate the driving force correction by depressing the accelerator pedal, thus providing a natural acceleration feeling fit to the vehicle operator's demand.
3.
A driving force control system according to claim 1 or 2, wherein said driving force correction generator (B30) is operative to set said driving force correction (ADDFD) equal to zero over a first portion of the range of said increment in running resistance (RESTRQ) less than a first predetermined value (RES#TLEV1)
4.
A driving force control system according to any of claims 1 to 3, wherein said driving force correction generator (B30) is operative to continuously vary said driving force correction (ADDFD) over second portion of the range of said increment in running resistance (RESTRQ).
5.
A driving force control system according to any of claims 1 or 3, wherein said driving force correction generator (B30) is operative to keep said driving force correction (ADDFD) constant over a third portion of the range of said increment in running resistance (RESTRQ) larger than a second predetermined value (RES#TLEV2).
6.
A driving force control system according to claim 1, wherein said driving force correction generator (B30) is operative to set said driving force correction (ADDFD) equal to a predetermined percentage of said increment in running resistance (RESTRQ), said predetermined percentage falling in a range from 30% to 70%.
7.
A driving force control system according to any of claims 1 to 6, wherein said running resistance increment generator (B20) is operative to determine acceleration resistance (GTRQ), and wherein said running resistance increment generator (B20) is operative to determine said increment in running resistance (RESTRQ) in response to said acceleration resistance (GTRQ).
8.
A driving force control system according to any of claims 1 to 5, wherein said running resistance increment generator (B20) is operative to determine driving torque (TRQOUT) and acceleration resistance (GRTQ), and wherein said running resistance increment generator (B20) is operative to determine said increment in running resistance (RESTRQ) by subtracting from said determined driving torque (TRQOUT) a sum of said standard resistance (RLDTRQ) and said acceleration resistance (GTRQ).
9.
A driving force control system according to claim 1, wherein said driving force correction generator (B300) is operative to vary said ratio of said driving force correction to said increment in running resistance (RESTRQ) in response to said increment in running resistance (RESTRQ), and wherein said driving force correction generator (B300) determines said driving force correction (ADDFD) by multiplying said ratio with said increment in running resistance (RESTRQ).
20
25
30
35
40
45
50
55
10. A method for controlling a driving force for an automotive vehicle having an accelerator pedal, an engine (1), and an automatic transmission (2), comprising the steps of:
7
EP 1 034 967 B1 generating (S12) an ordinary target driving force (tTd#n) in response to operator manipulation of the accelerator pedal (APO) and a vehicle speed (VSP), determining (S19) a corrected target driving force (tTd) by adding a driving force correction (ADDFD) to said ordinary target driving force (tTd#n),
5
generating (S20) a target engine torque (tTe) in response to said corrected target driving force, and generating (S21) a target ratio (tRATIO) in response to said corrected target driving force 10
characterized by the steps of generating (S15) a standard resistance (RLDTRQ), determining (S17) an increment in running resistance (RESTRQ) from said running resistance (RLDTRQ), converting (S18) said increment in running resistance (RESTRQ) into said driving force correction (ADDFD) by dividing the range of values of said running resistance (RESTRQ) into a plurality of portions, the values of said running resistance (RESTRQ) of each portion being converted differently into values of said driving force correction (ADDFD).
15
20
11. A method according to claim 10, wherein said step of determining (S17) an increment in running resistance (RESTRQ) comprises the steps of: generating (S14) running resistance torque (TRQOUT), generating (S16) acceleration resistance torque (GRTQ), and
25
determining (S17) an increment in running resistance (RESTRQ) by subtracting from said running resistance torque (RTQOUT) a sum of said acceleration resistance torque (RTRQ) and said standard resistance torque ( RLDTRQ). 30
Patentansprüche 1.
Antriebskraft- Steuerungssystem für ein Kraftfahrzeug, das ein Beschleunigerpedal , einen Motor (1) und ein automatisches Getriebe (2) hat, mit:
35
einem üblichen Ziel- Antriebskraftgenerator (B10), der eine übliche Ziel- Antriebskraft (tTd#n) in Abhängigkeit der Betätigung des Beschleunigerpedals (APO) von einem Bediener und einer Fahrzeuggeschwindigkeit (VSP) erzeugt, 40
einem Standardwiderstandsgenerator (B22), der einen Standardwiderstand (RLDTRQ) erzeugt, einen Antriebskraft- Korrekturgenerator (B30, B300) zum Erzeugen einer Antriebskorrektur (ADDFD),
45
einem eine korrigierte Antriebskraft erzeugenden Antriebskraft- Korrekturgenerator (B40) zum Bestimmen einer korrigierten Ziel- Antriebskraft (tTd) durch Addieren einer Antriebskraftkorrektur (ADDFD) zu der korrigierten Ziel- Antriebskraft (tTd#n), einem Ziel- Motordrehmomentgenerator (B50), um ein Ziel- Motordrehmoment (tTe) in Abhängigkeit von der korrigierten Ziel- Antriebskraft (tTdn) zu erzeugen, und
50
einem Zielverhältnisgenerator (B60), um ein Zielverhältnis (tRATIO) in Abhängigkeit von der korrigierten ZielAntriebskraft (tTdn) zu erzeugen,
55
dadurch gekennzeichnet, dass das Antriebskraft- Steuerungssystem außerdem einen Laufwiderstand- Inkrementgenerator (B20) aufweist, der den Standardwiderstandsgenerator (B22) enthält, wobei der Laufwiderstand- Inkrementgenerator (B20) wirksam ist, um ein Inkrement im Laufwiderstand (RESTRQ) aus dem Standardwiderstand (RLDTRQ) zu bestimmen, und der Antriebskraft- Korrekturgenerator (830, B300) vorgesehen ist, das Inkrement im Laufwiderstand (RESTRQ)
8
EP 1 034 967 B1 in die Antriebskraftkorrektur (ADDFD) durch Teilen des Wertebereichs des Laufwiderstandes (RESTRQ) in eine Mehrzahl von Abschnitten umzuwandeln, wobei die Werte des Laufwiderstandes (RESTRQ) jedes Abschnittes unterschiedlich in Werte der Antriebskraftkorrektur (ADDFD) umgewandelt werden. 2.
Antriebskraft- Steuerungssystem nach Anspruch 1. wobei über einen Abschnitt des Bereiches des Inkrements in dem Laufwiderstand (RESTRQ) der Antriebskraft- Korrekturgenerator (B30, B300) mit einem vorbestimmten Prozentsatz der Werte des Laufwiderstandes (RESTRQ) wirksam ist, diese in Werte der Antriebskraftkorrektur (ADDFD) umwandeln, so dass der verbleibende Abschnitt des Laufwiderstandes (RESTRQ), der nicht umgewandelt bleibt, nicht in die Antriebskraftkorrektur (ADDFD) übertragen wird, was einen Spielraum für den Bediener des Fahrzeuges lässt, um an der Antriebskraftkorrektur durch Niederdrücken des Beschleunigerpedals teilzuhaben, um somit ein natürliches Beschleunigungsgefühl passend zu der Anforderung des Fahrzeugführers zu schaffen.
3.
Antriebskraft- Steuerungssystem nach Anspruch 1 oder 2, wobei der Antriebskraft- Korrekturgenerator (B30) wirksam ist, die Antriebskraftkorrektur (ADDFD) gleich zu Null über einen ersten Abschnitt des Bereiches des Inkrementes des Laufwiderstandes (RESTRQ), geringer als ein erster vorbestimmter Wert (RES#TLEV1), auf Null festzulegen.
4.
Antriebskraft- Steuerungssystem nach einem der Ansprüche 1 bis 3, wobei der Antriebskraft- Korrekturgenerator (B30) wirksam ist, die Antriebskraftkorrektur (ADDFD) über einen zweiten Abschnitt des Bereiches des Zuwachses im Laufwiderstandes (RESTRQ) kontinuierlich zu verändern.
5.
Antriebskraft- Steuerungssystem nach einem der Ansprüche 1 bis 3, wobei der Antriebskraft- Korrekturgenerator (B30) wirksam ist, die Antriebskraftkorrektur (ADDFD) über den dritten Abschnitt des Bereiches des Inkrementes des Laufwiderstandes (RESTRQ), größer als ein zweiter vorbestimmter Wert (RES#TLEV2), konstant zu halten.
6.
Antriebskraft- Steuerungssystem nach Anspruch 1, wobei der Antriebskraft- Korrekturgenerator (B30) wirksam ist, die Antriebskraftkorrektur (ADDFD) gleich zu einem vorbestimmten Prozentsatz des Inkrementes im Laufwiderstand (RESTRQ) festzulegen, wobei der vorbestimmte Prozentsatz in einen Bereich von 30% bis 70% fällt.
30
7.
Antriebskraft- Steuerungssystem nach einem der Ansprüche 1 bis 6, wobei der Laufwiderstand- Inkrementgenerator (B20) wirksam ist, den Beschleunigungswiderstand (GTRQ) zu bestimmen, und wobei der LaufwiderstandInkrementgenerator (B20) wirksam ist, um das Inkrement des Laufwiderstandes (RESTRQ) in Abhängigkeit von dem Beschleunigungswiderstand (GTRQ) zu bestimmen.
35
8.
Antriebskraft- Steuerungssystem nach einem der Ansprüche 1 bis 5, wobei der Laufwiderstand- Inkrementgenerator (B20) wirksam ist, das Antriebsdrehmoment (TRQOUT) und den Beschleunigungswiderstand (GTRQ) zu bestimmen, und wobei der Laufwiderstand- Inkrementgenerator (B20) wirksam ist, das Inkrement im Laufwiderstand (RESTRQ) durch Subtrahieren einer Summe aus Standardwiderstand (RLDTRQ) und Beschleunigungswiderstand (GTRQ) von dem vorbestimmten Antriebsdrehmoment (TRQOUT) zu bestimmen.
9.
Antriebskraft- Steuerungssystem nach Anspruch 1, wobei der Antriebskraft- Korrekturgenerator (B300) wirksam ist, das Verhältnis der Antriebskraftkorrektur zu dem Inkrement des Laufwiderstandes (RESTRQ) in Abhängigkeit von dem Inkrement im Laufwiderstand (RESTRQ) zu bestimmen, und wobei der Antriebskraft- Korrekturgenerator (B300) die Antriebskraftkorrektur (ADDFD) durch Multiplizieren des Verhältnisses mit dem Inkrement im Laufwiderstand (RESTRQ) bestimmt.
5
10
15
20
25
40
45
10. Verfahren zum Steuern einer Antriebskraft für ein Kraftfahrzeug, das ein Beschleunigerpedal, einen Motor (1) und ein automatisches Getriebe (2) hat, mit den Schritten von: 50
Erzeugen (S12) einer üblichen Ziel- Antriebskraft (tTd#n) in Abhängigkeit von dem Bedienen des Beschleunigerpedals (APO) durch den Bediener und von der Fahrzeuggeschwindigkeit (VSP), Bestimmen (S19) einer korrigierten Ziel- Antriebskraft (tTd) durch Addieren einer Antriebskraftkorrektur (ADDFD) zu der üblichen Ziel- Antriebskraft (tTd#n),
55
Erzeugen (S20) eines Ziel- Motordrehmomentes (tTe) in Abhängigkeit von der korrigierten Ziel- Antriebskraft, und
9
EP 1 034 967 B1 Erzeugen (S21) eines Ziel- Verhältnisses (tRatio) in Abhängigkeit von der korrigierten Ziel- Antriebskraft gekennzeichnet durch die Schritte von Erzeugen (S15) eines Inkrementes des Laufwiderstandes (RESTRQ) aus dem Laufwiderstand (RLDTRQ), Bestimmen (S17) eines Inkrementes im Laufwiderstand (RESTRQ) aus dem Laufwiderstand (RLDTRQ), Umwandeln (S18) des Inkrementes des Laufwiderstandes (RESTRQ) in die Antriebskraftkorrektur (ADDFD) durch Teilen des Wertebereichs des Laufwiderstandes (RESTRQ) in eine Mehrzahl von Abschnitten, wobei die Werte des Laufwiderstandes (RESTRQ) jedes Abschnittes unterschiedlich in Werte der Antriebskraftkorrektur (ADDFD) umgewandelt werden.
5
10
11. Verfahren nach Anspruch 10, wobei der Schritt des Bestimmens (S17) eines Inkrementes im Laufwiderstand (RESTRQ) die Schritte aufweist von: Erzeugen (S14) eines Laufwiderstandsdrehmomentes (TRQOUT), Erzeugen (S16) eines Beschleunigungswiderstandsdrehmomentes (GRTQ), und
15
Bestimmen (S17) eines Inkrementes des Laufwiderstandes (RESTRQ) durch Subtrahieren einer Summe aus Beschleunigungswiderstanddrehmoment (RTRQ) und Standardwiderstanddrehmoment (RLDTRQ) von dem Laufwiderstandsdrehmoment (TRQOUT). 20
Revendications 1. 25
un générateur de force motrice cible ordinaire (B10) générant une force motrice cible ordinaire (tTd#n) en réponse à la manipulation par l'opérateur de la pédale d'accélérateur (APO) et à la vitesse du véhicule (VSP), un générateur de résistance standard (B22) générant une résistance standard (RLDTRQ), un générateur de correcti on de force motrice (B30, B300) destiné à générer une correction de force motrice (ADDFD), un générateur de force motrice corrigée (B40) destiné à déterminer une force motrice cible corrigée (tTd) en ajoutant une correction de force motrice (ADDFD) à ladite force motrice cible ordinaire (tTd#n), un générateur de couple cible de moteur (B50) destiné à générer un couple cible du moteur (tTe) en réponse à ladite force motrice corrigée (tTd) et un générateur de rapport cible (B60) destiné à générer un rapport cible (tRATIO) en réponse à ladite force motrice cible corrigée (tTd)
30
35
caractérisé en ce que ledit système de commande de force motrice comprend en outre un générateur d'incrément de résistance de marche (B20) comprenant ledit générateur de résistance standard (B22), ledit générateur d'incrément de résistance de marche (B20) ayant pour fonction de déterminer un incrément dans la résistance de marche (RESTRQ) à partir de ladite résistance standard (RLDTRQ), et ledit générateur de correction de force motr ice (B30, B300) étant adapté pour convertir ledit incrément de résistance de marche (RESTRQ) en ladite correction de force motrice (ADDFD) en divisant la plage de valeurs de ladite résistance de marche (RESTRQ) en une pluralité de portions, les valeurs de ladite résistance de marche (RESTRQ) de chaque portion étant converties différemment en valeurs de ladite correction de force motrice (ADDFD).
40
45
50
55
Système de commande de force motrice pour véhicule automobile possédant une pédale d'accélérateur, un moteur (1) et une transmission automatique (2) comprenant:
2.
Système de commande de force motrice selon la revendication 1 dans lequel, sur une portion de la plage dudit incrément dans ladite résistance de marche (RESTRQ), ledit générateur de correction de force motrice (B30, B300) a pour fonction de convertir un pourcentage prédéterminé des valeurs de ladite résistance de marche (RESTRQ) en valeurs de ladite correction de force motrice (ADDFD), de telle sorte que la portion restante de ladite résistance de marche (RESTRQ) laissée non convertie n'est pas traduite en ladite correction de force motrice (ADDFD), ce qui laisse de la place pour que l'utilisateur du véhicule puisse participer à la correction de force motrice en appuyant sur la pédale d'accélérateur, en conférant ainsi une sensation d'accélération naturelle adaptée à la demande de l'utilisateur du véhicule.
10
EP 1 034 967 B1 3.
Système de commande de force motrice selon la revendication 1 ou 2, dans lequel ledit générateur de correction de force motrice (B30) a pour fonction de régler ladite correction de force motrice (ADDFD) à zéro sur une première portion de la plage dudit incrément de résistance de marche (RESTRQ) inférieure à une première valeur prédéterminée (RES#TLEV1).
4.
Système de commande de force motrice selon l'une quelconque des revendications 1 à 3, dans lequel ledit générateur de correction de force motrice (B30) a pour fonction de faire varier continuellement ladite correction de force motrice (ADDFD) sur la seconde portion de la plage dudit incrément de résistance de marche (RESTRQ).
10
5.
Système de commande de force motrice selon l'une quelconque des revendications 1 à 3, dans lequel ledit générateur de correction de force motrice (B30) a pour fonction de maintenir ladite correction de force motrice (ADDFD) constante sur une troisième portion de la plage dudit incrément de résistance de marche (RESTRQ) supérieur à une seconde valeur prédéterminée (RES#TLEV2).
15
6.
Système de commande de force motrice selon la revendication 1, dans lequel ledit générateur de correction de force motrice (B30) a pour fonction de régler ladite correction de force motrice (ADDFD) à un pourcentage prédéterminé dudit incrément de résistance de marche (RESTRQ), ledit pourcentage prédéterminé étant compris dans une plage de 30% à 70%.
20
7.
Système de commande de force motrice selon l'une quelconque des revendications 1 à 6, dans lequel ledit générateur d'incrément de résistance de marche (B20) a pour fonction de déterminer la résistance d'accélération (GTRQ), et dans lequel ledit générateur d'incrément de résistance de marche (B20) a pour fonction de déterminer ledit incrément de résistance de marche (RESTRQ) en réponse à ladite résistance d'accélération (GTRQ).
25
8.
Système de commande de force motrice selon l'une quelconque des revendications 1 à 5, dans lequel ledit générateur d'incrément de résistance de marche (B20) a pour fonction de déterminer le couple moteur (TRQOUT) et la résistance d'accélération (GRTQ), et dans lequel ledit générateur d'incrément de résistance de marche (B20) a pour fonction de déterminer ledit incrément de résistance de marche (RESTRQ) en soustrayant dudit couple moteur déterminé (TRQOUT) la somme de ladite résistance standard (RLDTRQ) et de ladite résistance d'accélération (GTRQ).
9.
Système de commande de force motrice selon la revendication 1, dans lequel ledit générateur de correction de force motrice (B300) a pour fonction de faire varier ledit rapport de ladite correction de force motrice sur ledit incrément de résistance de marche (RESTRQ) en réponse audit incrément de résistance de marche (RESTRQ), et dans lequel ledit générateur de correction de force motrice (B300) détermine ladite correction de force motrice (ADDFD) en multipliant ledit rapport par ledit incrément de résistance de marché (RESTRQ).
5
30
35
10. Procédé de commande de force motrice de véhicule automobile possédant une pédale d'accélérateur, un moteur (1) et une transmission automatique (2), comprenant les étapes de: 40
45
50
55
génération (S12) d'une force motrice cible ordinaire (tTd#n) en réponse à la manipulation par l'utilisateur de la pédale de l'accélérateur (APO) et à la vitesse du véhicule (VSP), détermination (S19) d'une force motrice cible corrigé e (tTd) en ajoutant une correction de force motrice (ADDFD) à ladite force motrice cible ordinaire (tTd#n), génération (S20) d'un couple de moteur cible (tTe) en réponse à ladite force motrice cible corrigée, et génération (S21) d'un couple cible (tRATIO ) en réponse à ladite force motrice cible corrigée caractérisé par les étapes de génération (S15) d'une résistance standard (RLDTRQ), détermination (S17) d'un incrément de résistance de marche (RESTRQ) à partir de ladite résistance de marche (RLDTRQ), conversion (S18) dudit incrément de résistance de marche (RESTRQ) en ladite correction de force motrice (ADDFD) en divisant la plage de valeurs de ladite résistance de marche (RESTRQ) en une pluralité de portions, les valeurs de ladite résistance de marche (RESTRQ) de chaque portion étant converties différemment en valeurs de ladite correction de force motrice (ADDFD). 11. Procédé selon la revendication 10, dans lequel ladite étape de détermination (S17) d'un incrément de résistance de marche (RESTRQ) comprend les étapes de:
11
EP 1 034 967 B1
5
génération (S14) du couple de résistance de marche (TRQOUT), génération (S16) du couple de résistance d'accélération (GRTQ), et détermination (S17) d'un incrément de résistance de marche (RESTRQ) en soustrayant dudit couple de résistance de marche (RTQOUT) la somme dudit couple de résistance d'accélération (RTRQ) et dudit couple de résistance standard (RLDTRQ).
10
15
20
25
30
35
40
45
50
55
12
EP 1 034 967 B1
13
EP 1 034 967 B1
14
EP 1 034 967 B1
15
EP 1 034 967 B1
16
EP 1 034 967 B1
17
EP 1 034 967 B1
18
EP 1 034 967 B1
19
Coordinate logistics for the event including torchbearers, transportation, road closures, route timing, torch exchange locations, ATCO portable stage etc. Work with protocol liaison to create formal event program with sponsors, dignitaries, government officials and City of Airdrie. Conduct safety and risk assessment for the event. Emplois Safety Coordination Services Filter results by: Trier par: pertinence - date. Estimation du salaire. Hand eye coordination and manual dexterity would be an asset. Il y a 30+ jours - sauvegarder. ATCO Frontec 8 avis. Moose Jaw, SK +1 lieu.
Lawn Mower Parts and Accessories
Lawnmower parts and accessories provide a simple way to give your lawn mower a new lease of life without the huge expense of purchasing a brand new machine. Even the most well-maintained lawnmowers need replacement parts, as they will start to wear out over time. So if you want to improve the performance of a sluggish machine or maybe the lawnmower blades seem a bit worn, then replacing the older parts could improve the functionality of your lawnmower.
Lawnmowers can also come with various add-on accessories so for example, if you have had enough of continually emptying the grass clippings, you could consider buying a mulching plug.
- Atco royale/heavy duty 20/24/30' cylinder drive assembly. Hi and welcome, i have a used atco cylinder drive assembley in very good condition complete with spring cup and retaining screw fits 20/24/30' royale and heavy duty models any qs please ask. Atco royale b20 / b24 / b30 i/c lawnmower cutting drum drive sprocket.
- United States: Charlotte (Nc) Nagaoka, Japan; Cachoeiro De Itapemirim, Brazil; Bissau, Guinea-Bissau; Czestochowa, Poland.
Atco Royale B30 Manual Dexterity System
Improving Performance
Replacing lawnmower parts with good quality ones is an easy and efficient way to revitalise your lawnmower. Blunt mower blades make lawn cutting a time-consuming task while new, sharp blades will give a sharp, neat and tidy finish to your lawn. Regularly maintaining and replacing the small parts of a lawn mower will help prolong longevity whether it is replacing the air filter or a spark plug, or adding good quality engine oil. You can find lawn mower service kits to keep your mower moving.
Atco Royale B30
Double-check that you know your lawnmower model number to ensure the parts are compatible with your mower. Zee tv fear files mantra mp3. All the main brands have spare parts and accessories to keep your lawnmower performing well for years to come. Whether you are looking for a Flymo spool and double feed line, an NGK spark plug, Husqvarna engine parts or Westwood axle, you will find high-quality parts to fit your mower and keep it running with an optimum performance.
Atco Royale B30 Manual Dexterity Activities
When it comes to getting the most out of your lawnmower, cutting grass is just the obvious start and, with various attachments, your riding lawnmower becomes a multi-functional piece of equipment. From bagging leaves, blowing and clearing snow to hauling mulch, you can find time and energy saving accessories to make your garden work a breeze.